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Abstract

We consider the dynamics of a non-spherical gas bubble undergoing large amplitude oscillations of
shape and volume in an inviscid, incompressible fluid. Solutions obtained via either a spectral or
boundary-integral technique. The primary objective is to explore the coupling between oscillations of
bubble volume and shape, starting from initial conditions where the bubble is either deformed in shape
or at a non-equilibrium volume, and the fluid is stationary far from the bubble. For bubbles with a
spherical mean shape, we consider conditions that are near 2:1 resonance (as predicted by small
amplitude theory). We find that the small deformation theory provides a reasonable estimate of the
conditions for shape instability, and of the time scales for resonant interactions between the purely
radial and shape modes. However, other features such as the onset of higher order shape modes, or
strong departures from Rayleigh—Plesset predictions, are not well approximated by the small amplitude
theory. Bubbles which have a non-spherical mean shape exhibit two frequency ranges, corresponding to
2:1 and 1:1 resonance, where Rayleigh—Plesset theory is insufficient to describe the volume response of
an oscillating bubble. We also show that purely radial initial conditions can lead to bubble breakup as
energy is transferred from purely radial oscillations to shape oscillations. © 1999 Published by Elsevier
Science Ltd. All rights reserved.

1. Introduction

Oscillations of bubble volume and shape play an important role in many natural and
industrial processes. The most extensively studied phenomenon is the production of sound by
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oscillations of bubble volume, based upon the well-known Rayleigh—Plesset analysis of an
oscillating spherical bubble (Plesset and Prosperetti, 1997; Prosperetti, 1984a, 1984b). Shape
oscillations for bubbles of constant volume have also been studied in the context of bubble
breakup (Sevik and Park, 1973; Miksis, 1981; Kang and Leal, 1987, 1988, 1989, 1990). Until
recently, however, there has been relatively little work on understanding the coupling between
oscillations of volume and shape. The primary issue addressed was the parametric instability of
oscillating spherical bubbles to infinitesimal perturbations of shape. However, this picture
changed dramatically with the suggestion of Longuet-Higgins (1989a) that deformations of
shape, as encountered in bubbles entrained by breaking waves in the ocean, might represent a
significant source of sound via resonant excitation of volume oscillations even for a bubble that
was initially at its equilibrium volume. This suggestion, and the work that emanated from it,
has renewed interest in the dynamics of non-spherical bubble oscillations.

The vast majority of authors, following Longuet-Higgins (1989a), focused on the changes in
oscillations of bubble volume through resonant interactions with one or more shape modes
(Longuet-Higgins, 1989b; Ffowcs Williams and Guo, 1991; Mei and Zhow, 1991; Yang et al.,
1993; Feng and Leal, 1993, 1994). These studies considered only small amplitude oscillations of
volume and shape using the method of domain perturbations and various techniques from the
analysis of non-linear oscillators to resolve the fast timescale associated with the natural
frequency of volume and/or shape oscillations, and the slow timescale characterizing the
resonant exchange of energy between the volume and shape modes. This, and related work is
summarized in the recent review by Feng and Leal (1997). In general, for an inviscid fluid, the
interaction between modes leads to a continuous exchange of energy between oscillations of
volume and shape, yielding the possibility of significant shape change resulting from an initial
perturbation of the volume, as well as radial oscillations from an initial perturbation of shape.

Interactions between radial and shape oscillations have been found in the small deformation
theory to occur under conditions where the natural frequency of the purely radial mode is
equal or nearly equal to an integer multiple of the natural frequency for one of the Legendre
modes that describe the bubble shape. Longuet-Higgins (1989a,b) considered 2:1 resonance in
which the natural frequency of the radial oscillation is twice that of the shape mode, and the
interaction is via quadratic resonance. For bubbles with a spherical steady-state shape, the
most significant interactions between changes in volume and shape are these quadratic, 2:1
resonance interactions. However, resonant interactions are also predicted for radial mode
frequencies equal to larger integer multiples of the shape mode frequency.

When the steady-state shape of a bubble is not spherical due, for example, to an external
flow or an anisotropic pressure field, the interaction between changes in volume and shape can
be enhanced. In addition to the 2:1 and higher resonances, Yang et al. (1993) and Feng and
Leal (1993) have shown in this case that energy is exchanged when the natural frequency for
radial oscillations equals the frequency of one of the shape modes, i.e. wy & w,. We refer to
this as 1:1 resonance. It is a consequence of the fact that as the bubble volume increases, the
magnitude of changes in the interface pressure or stress, which cause the mean shape
deformation, are enhanced.

In this paper, numerical simulations are used to extend our current understanding of these
phenomena, by considering larger amplitude volume and shape oscillations. In the small
amplitude limit, the amount of time required for a significant exchange of energy via resonant
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interactions is very long, of O(¢ ') where ¢ is the magnitude of shape or volume perturbations.
It is thus likely that such small amplitude resonant effects would be damped by viscous effects
before playing a prominent role in the dynamics of a real bubble. At finite amplitude, however,
the timescale for interaction between modes will decrease and we may expect the small
amplitude resonance analysis to provide qualitative insight into the bubble behavior. In
addition, such interactions will occur even for conditions where the natural frequencies are not
near resonance. Finally, although the theoretical, small amplitude theory also predicts that the
interactions occur only between radial oscillations and a single Legendre shape mode, it is
expected that more complicated shape oscillations will be excited at finite amplitude, due to
mode coupling between the various shape modes. From a practical point of view, it is
important to establish when this occurs, because it represents a limit on the regime where we
might expect the small amplitude theory to provide a useful, low-dimensional, alternative to
the Rayleigh—Plesset theory. The use of a numerical method to simulate the bubble response in
the finite deformation regime will test these hypotheses and provide additional insight into the
physics underlying the dynamics of bubble oscillations.

2. Background

In order to understand the physics underlying the numerical results presented here, it is
essential to give some details of the small amplitude analytical treatment of an oscillating non-
spherical bubble. The following summary is based upon the work by Feng and Leal (1993) and
we adopt their notation.

Let the small amplitude limit, the dynamics of bubble oscillations is largely determined by
the proximity to resonance conditions. If the natural frequency for volume oscillations in
dimensional form is denoted as @y,

. r P
ek (F )

and the natural frequency of the nth shape mode (described by the Legendre polynomial P, ) as
@y

o ;(rz — D+ D(n+2) (2)
ap

then exact resonance occurs when &¢ — k®, = 0 for integer k.! Hereafter, @y and &, will be
replaced by their dimensionless equivalents w, and w,,, which have been nondimensionalized by
(T/(@*p))'2.

In the small amplitude theories, it is assumed that any differences from exact resonance
conditions is small, O(¢), and this is quantified by a ‘detuning’ parameter, S,, defined such that

"'Here, I is the interfacial tension, a is the undeformed radius, p the liquid density, P., the ambient pressure and 7y
is the ratio of specific heats (C,/C,).
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where ¢ denotes the characteristic amplitude of the shape and volume perturbations. For
convenience, in what follows, we will use i, for k=2 (2:1 resonance), and f; for k=1 (1:1
resonance). When the detuning is large (wo — kw,, > O(¢)) there is no interaction between modes
according to the small amplitude, theoretical predictions. For small detuning (wy— kw,, < O(¢)),
however, the nth shape mode and the radial mode are in a near resonant (or exact resonant)
state, and energy exchange between these oscillating modes can be significant, on a timescale of
O(c ") relative to the natural timescale for radial or shape oscillations, O(2n/wy) or OQ2n/w,,).

The detuning parameters, ff, and f;, are appropriate for bubbles with a mean spherical
shape. However, the small amplitude theory and our present study also consider bubbles that
have a non-spherical steady-state shape. While there are many mechanisms by which a bubble
may achieve a deformed steady-state shape, we consider the simplest case of a non-spherical
mean shape due to a non-uniform pressure distribution on the bubble interface, A(y,
t)=Ay+ A,P,(n), which might be envisioned as a ‘radiation’ pressure produced via modulated
ultrasonic wave fields in an experimental levitation system (Marston, 1980). The presence of a
mean deformation causes the natural frequencies for volume and shape oscillations to shift
relative to their values for spherical bubbles. Therefore, when the mean shape of a bubble is
non-spherical, the detuning parameters based upon the natural frequencies for a spherical
bubble, f, and f;, must be modified to account for these changes. The small amplitude theory
introduces effective detuning parameters, f and B* that incorporate the shifts in natural
frequencies, to quantify the proximity to exact resonance conditions in these cases:

ﬂ:ﬁ0+<3y—l +3y—1>A0_(n+1)(2n+1)kn<4(n+1)+ 10—n>An @
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Fig. 1. The position of the interface given by the function r(0).
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for 2:1 and 1:1 resonance, respectively.

For presentation of the present work, as well as comparisons with the small deformation
theories, it is convenient to introduce a common notation to describe the changes in bubble
volume and shape. The concept of radial and shape modes and their associated amplitudes is
particularly important here as the numerical results are most simply represented in terms of the
amplitudes of the modes as functions of time. For simplicity, we consider only axisymmetric
deformations of shape, but the fact that the azimuthal modes are degenerate in the small
deformation limit suggests that the results are actually quite general. The central idea,
illustrated in Fig. 1, is that the interface of a bubble at any time can be described by a function
r(0) which can be approximated by a summation of Legendre polynomials:

r0)=1+f0=~1+ i CjPj(cos0) (6)
=0

where the coefficients, C;, are given by

C = ijijz J(0)Pj(cos 0) sin 0 dO (7

The above equations (6) and (7) are general and do not assume that the deviation from
spherical geometry is infinitesimal. The ability to describe shapes by Legendre modes permits
the finite amplitude numerical results to be compared directly with small amplitude predictions.
This is a generalized Fourier representation of a function and is useful in the analytical
problem because the solution to Laplace’s equation in spherical coordinates requires Legendre
polynomials.

In the small amplitude theory, the coefficients of the Legendre modes are O(¢) or smaller,
and functions of time that are determined as part of the solution. Utilizing the notation of the
small amplitude theory, these amplitude coefficients, C;, can be explicitly expressed in the form

C = eC;l) + ezC_](z) +0() +cec. (®)

where

1 s
= 7%14(0) e” with & =ko, j=0
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In the small amplitude theory o, ;=0 for all j#0 or n where n corresponds to the shape mode
that is resonant (or near-resonant) with the radial mode with wy=*kw, fixed and tT=¢t. The
two nonzero amplitude functions at O(¢) are governed by a coupled pair of nonlinear ordinary
differential equations arising from the solvability conditions from the small deformation
analysis. The details of the dynamics depend upon the value of k& in Eq. (3). A detailed
summary of the results for k=1, 2 can be found in the recent review by Feng and Leal (1997).
Here, we briefly recapitulate the main results.

For the case when k=2, the interaction between the Py and P, modes exhibits quadratic
resonance as indicated earlier, and this occurs whether the steady-state shape is spherical or
non-spherical. In general, at O(¢), there is a continuous exchange of energy back and forth
between these two modes, with conservation of total energy in the inviscid limit. For all
conditions, however, the purely radial oscillation, i.e. «; o =a nonzero constant and o, =0, is a
fixed point solution of the coupled amplitude equations. The stability of this solution, and the
qualitative nature of the coupling between modes depends upon the magnitude of the effective
detuning parameter defined in Eq. (4), relative to a critical value

4_1 n n
|eﬁ|cr:2er=u[elal,o|+ ¢l | } (11)

4 2/(n+1)2n+1)

which depends on the amplitudes of the Py and P, modes, according to the right-hand side of
Eq. (11). It may be noted that this term is constant, independent of time, for an inviscid fluid.
Eq. (11) has been multiplied by ¢ because the level of detuning ¢f will be the significant
quantity for the numerical results presented later. For f>f., there is relatively little
interaction between the radial and shape modes (P, and P,), and the purely radial oscillation
is stable in the sense that infinitesimal perturbations of shape remain infinitesimal for all time
in the inviscid limit. In this case, there is also a second fixed point solution that corresponds to
a dominant shape mode oscillation with only weak coupling to radial motion. For < ., one
the other hand, the nature of the solution for oy and o, changes. The purely radial fixed
point solution bifurcates into an elliptic and hyperbolic pair. The hyperbolic point remains at
the purely radial point in the solution domain, but it is unstable in the sense that there is a
homoclinic branch of solutions that emanates from it, so that infinitesimal perturbations of
shape now lead to finite amplitudes in the shape mode. Indeed, as f — 0, the solution branch
that emanates from the purely radial position in the solution domain passes through the point
corresponding to a pure shape oscillation, meaning that there will be a complete transfer of
energy from radial oscillations to shape oscillations before the system eventually reverts back
again to radial oscillations. The critical bifurcation point fS. corresponds to the onset of
parametric instability to infinitesimal perturbations of shape.
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The case of 1:1 resonance, corresponding to wg— w,, = O(¢), is fundamentally different. First,
it only appears when there is a mean deformation of shape. Second, though the strength of
interactions between the P, and P, mode increases as the effective detuning parameter 7,
defined by Eq. (5), becomes smaller, there is no critical value. The nature of the solutions and
the strength of interactions changes smoothly and monotonically as the value of f* changes.
Finally, although there are still two fixed points in the solution domain for 1:1 resonance,
where the amplitude functions o ¢ and «;, are time independent, neither of these is coincident
with pure radial or pure shape oscillations. A small perturbation of shape from spherical will
always lead to a shape oscillation of finite amplitude (the magnitude depending upon the
degree of detuning, i.e. on the magnitude of ).

The analysis summarized above leads to the conclusion that there will generally be
interactions between purely radial oscillations, the oscillations of bubble shape, the strength of
which depends upon proximity to a resonant condition where wo — kw,=0O(¢). When this
occurs, there is an exchange of energy between the purely radial and shape modes, which
implies that the magnitude of radial oscillations will generally be smaller than what would be
predicted by the Rayleigh—Plesset theory. When the small amplitude approximation can be
applied, the coupled pair of equations for the amplitude functions, o, and o, ,, might then
provide an alternative to Rayleigh—Plesset theory as a means to predict, for example, the
acoustic signature of a bubble. Of course, the small amplitude theory is restricted, in principle,
to infinitesimal perturbations of volume or shape from a steady-state condition, and leads to
coupling between radial oscillations and a single shape mode. As is often the case with
perturbation theories, one may hope that the small amplitude theory would be at least
qualitatively representative of the bubble behavior for non-infinitesimal perturbations. To test
the range of applicability of the small amplitude theory and increase our understanding of the
dynamics of non-spherical bubbles, it is necessary to consider deformations of shape and
volume that are not small. For this purpose, we turn to numerical simulations, as described in
the remainder of this paper, which is the first of a pair. In this first paper, we consider free
oscillations in an inviscid fluid, starting from non-equilibrium initial conditions. In the second
paper, we consider the bubble response to time-dependent changes in the ambient pressure.

3. Numerical methods

We have utilized two distinct numerical techniques for the solution of flow problems
involving finite amplitude oscillations of volume and shape for a single bubble in an
unbounded, incompressible liquid. These are: (1) a spectral code which utilizes a modal
decomposition of the bubble shape in terms of spherical harmonics, and is suitable for purely
inviscid flows; and (2) a boundary-integral technique which is numerically exact for bubbles of
arbitrary shape in a fluid whose motion can be described by a potential function, but which
can also be applied approximately to systems with weak viscosity.

3.1. The spectral method

We employ a traditional spectral method as discussed in Fletcher (1991) that is based on the
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preceding analytical work for small amplitude oscillations (Yang et al., 1993; Feng and Leal,
1993, 1994). the method assumes that the bubble surface can be decomposed into a finite series
of Legendre polynomials with time-dependent coefficients, and that the potential function can
likewise be represented by a series of ‘decaying’ axisymmetric spherical harmonics based on
Legendre polynomials. Thus, we automatically satisfy the governing equation for potential flow
throughout the domain and are left with the time-dependent coefficients of the shape and
potential functions to satisfy the boundary conditions. As with other spectral methods, we
make use of the orthogonality of Legendre polynomials and various recursion relations to
generate ordinary differential equations for the time-dependent coefficients. The result of this
technique is a system of 2N ordinary differential equations where N is the total number of
modes kept in the Legendre series. These equations are advanced in time using a fourth-order
Runge—Kutta routine to give the evolution of the bubble shape and the external potential. The
algorithm is very efficient computationally for small amplitude deformation, but as the number
of Legendre modes which must be retained for an accurate solution increases, the computation
time increases in proportion to N2. The convergence of the method with increasing number of
retained modes and other details of implementation are reported in McDougald’s Ph.D. thesis
(1997).

3.2. The boundary integral method

The boundary integral method is well suited to the solution of free surface problems because
it does not require the discretization of the computational domain. Instead the solution of the
problem is expressed in terms of a distribution of fundamental singularities at the boundaries,
and the problem is reduced to solving integral equations, derived from the general solution by
application of interface boundary conditions, for the strength of these singularities as a
function of position on the interface. The dimension of the problem is thereby reduced by one.
Furthermore, the velocity of points on the boundary is obtained directly from the singularity
strengths, and it is thus possible to determine the evolution of the interface in time without
having to explicitly evaluate the velocity field elsewhere in the domain. In our treatment, we
consider only axisymmetric shapes so our domain is two-dimensional and the boundary is
represented by a one-dimensional curve.

The main limitation of the boundary integral approach for applications at high Reynolds
number is that it requires the velocity field to be expressible in terms of a potential, thereby
preventing the explicit inclusion of viscous effects. It is possible, however, to include weak
viscous effects if the vorticity is confined to a thin region near the interface (Lundgren and
Mansour, 1988). Our implementation of the boundary integral scheme follows Brebbia (1978)
which treats the method as a special case of the weighted residual method. The weighting
functions are chosen to satisfy Laplace’s equation and in fact are fundamental solutions
corresponding to point sources on the boundary. The nature of the singularity occurring at
each node is therefore known, allowing it to be integrated either analytically, if the boundary is
discretized using linear elements, or by an appropriate numerical method for more complicated
segmentation of the interface. In our case we use a 32-point Gaussian scheme to evaluate the
nodal integrals and a five-point Gaussian scheme for other points along the interface as our
elements are determined by a cubic spline interpolation between the nodes. The time
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advancement in the code is done using a fourth-order Runge—Kutta routine to update the
position and the value of the potential for each node along the boundary. The ability to
reproduce the results of Rayleigh—Plesset theory and the convergence of the method with
decreasing time-step size and increasing spatial resolution, i.e. number of nodes, are again
reported in McDougald (1997).

4. Numerical results

In this first paper, we consider free oscillation of a bubble in a quiescent fluid, with either a
spherical or non-spherical mean shape (e.g. due to the effect of an anisotropic radiation
pressure for a bubble in an ultrasonic sound field).

4.1. Free oscillations of a bubble with a spherical mean shape

For a spherical bubble in a quiescent fluid, we have noted previously, that the dominant
resonant interaction is 2:1 resonance between a purely radial oscillation and the shape mode,
P,(n), for which wy ~ 2w,. In this instance the detuning parameters f, and f are equivalent
and the fundamental change in the dynamics of the bubble oscillation is predicted by the small
deformation theory to occur at a critical degree of detuning, |ef., given by Eq. (11). Hereafter,
we refer to the level of detuning ¢ff=wy — kw,, as the detuning parameter because the difference
in natural frequencies has direct physical significance. In this section, we consider a series of
finite amplitude solutions, with initial perturbations of the radius and P, mode of shape
deformation, as shown in Table 1, which correspond to three different values of the critical
detuning parameter, eﬁ\cr. These values are also listed in Table 1. For each of the cases A-C,
we present numerical solutions for a series of different values of the detuning parameter, ¢f,
including values both larger and smaller than the ‘critical’ value, estimated from the small
deformation theory. It should be emphasized, of course, that the amplitudes of the shape and
volume changes considered here are not small, and hence there is no reason to suppose that
the small amplitude results should apply.

The first case, case A, is intended to have small enough initial displacements to be at least
close to the regime of validity of the small amplitude theory. Calculations were performed for
¢f=0.000, —0.010, —0.100, —1.000, and —4.000 as well as for several values near the expected
critical value of |¢f]., =0.063. Typical results for a case with strong interactions, ¢f=0.000, and
a case for |¢f|> |¢pler, namely —0.100, are shown in Figs 2. and 3 along with the magnitudes of

Table 1
The initial radial and shape disturbances and the predicted critical value of the detuning parameter

Case €y g € |c[)’|Cr
A —0.005 0.010 0.063
B -0.05 0.10 0.63

C 0.10 0.10 1.22
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Fig. 2. Amplitudes of the Py and P, modes and the magnitude of the amplitude functions eo; o(t) and e 5(tr) from
small deformation theory for Case A (Table 1) with ¢=0.000.

€1 o(t) and eoyo(t) from the small deformation theory for comparison. These figures, and
most of those that follow, show the amplitudes of the oscillating modes as a function of time,
non-dimensionalized by 7.=2n/®,, and are obtained either directly from the spectral
computation or by performing a Legendre decomposition of the bubble interface computed
using the boundary integral method.

The result in Fig. 2 is a spectral code computation with 10 modes retained for a bubble at
the exact resonance condition, wg=2m,. The initial conditions, in this case represent a small
shape deformation, and it can be seen that the purely radial mode is unstable, as there is a
nearly complete transfer of energy to the oscillating shape mode which occurs near
wot/2n = 85. The very long period for change in the amplitudes of the modes is due to the fact
that the deformation amplitudes are small, and that the solution trajectory is very close to the
homoclinic orbit that emanates from the point in the solution domain corresponding to purely
radial oscillations. The fact that small changes in the amplitude of radial oscillations will drive
larger amplitude shape oscillations is also clearly apparent in Fig. 2. The small amplitude study
predicts that a complete transfer of energy from radial to shape modes can yield a maximum
change A, = 2\/((n+ D)(2n + 1))Ag to the amplitude of shape oscillations, given a maximum
amplitude Aq of the Py mode. This amplification is due to the fact that significantly more work
is required to change the bubble volume than to change the bubble shape. As the volume
changes, the gas within the bubble must be compressed or expanded, while changes in shape
mainly contribute to the energy of the interface due to surface tension. In the present case,
with an initial amplitude corresponding to Ay=0.005 and A,=0.01 and n=2, the predicted
maximum amplitude for shape oscillations is 0.048, while the maximum achieved in Fig. 2 is
approximately 0.04. The difference is primarily because the initial condition does not fall
precisely on the solution trajectory where there is 100% exchange of energy between modes. It
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will be noted that the amplitude envelope from the numerical solution agrees very well with
predictions of the amplitude functions, o o and o, from the small deformation theory.

Fig. 3 starts from the same initial conditions, case A, except the amount of detuning has
increased to ¢ff= — 0.100 and thus exceeds the critical value predicted by the small amplitude
theory, |¢f].. =0.063. Not surprisingly, there is little exchange of energy between modes and the
period of the slow variation in the amplitudes is decreased by approximately a factor of 2. One
interesting feature of this result, and all the results for case A with |eff| = 0.060, is that the
amplitude of the shape mode never becomes larger than its initial value. This is clear evidence
that the volume oscillations are stable under these conditions in agreement with the small
deformation theory. The transition to stable spherical oscillations, which is found numerically
to occur at |ef|..=0.060, is conservatively predicted by the stability limit from small amplitude
theory, |ef|e:=0.063. The small difference is presumably due to the fact that even case A is not
quite within the small amplitude theory even though the bubble response is still reasonably
well predicted by the small amplitude theory.

These long time results were generated using the spectral code because of its efficiency in
simulating cases involving only a few modes. The results for the initial conditions of case A
exhibited oscillations of the Py, P, and P4 modes only, for all values of ¢f. The P4 mode
reached a maximum amplitude of 0.0005 for the case of ¢f=0.000 when the radial oscillations
were at their smallest amplitude. Higher order modes had amplitudes less than 10™*. The
boundary integral method was used to simulate these cases as well, for a shorter time interval,
and the amplitude and volume results agreed with the spectral results over the range tested.

The second case, corresponding to case B in Table 1, has initial perturbation amplitudes
increased by a factor of 10, which also increases the predicted critical value, |¢f|., from the
small amplitude analysis by a factor of 10. Since the disturbance amplitudes are no longer

005 T T T T T T T T T [
0.04 |
0.03 |
0.02 |
0.01 &
0.00 B
-0.01 [
-0.02 [
-0.03 |
-0.04 -
-0.05

Amplitude

L 1 L 1 s | L t 3 1
0.0 20.0 40.0 60.0 80.0 100.0
Wt/ 271

Fig. 3. Amplitudes of the Py and P, modes and the magnitude of the amplitude functions ex; o(t) and ex;»(7) from
small deformation theory for Case A (Table 1) with ¢f= —0.100.
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Fig. 4. Amplitudes of the Py, P, and P4 modes for Case B (Table 1) with ¢ =0.00.

infinitesimal, we expect to see some difference between the actual magnitude of the detuning
parameter where the stability changes, and the predicted value from small amplitude analysis.
In addition, we should anticipate that modes other than Py, and P, may be excited. Numerical
simulations using both the spectral and boundary integral methods have been done for values
of the detuning parameter ranging from ¢f=0.00 to —4.00 with several cases near the
predicted stability boundary, |¢f|.,=0.63. Results from the spectral code, retaining a total of 14
shape modes, are shown for representative cases, ¢ =0.00, —0.40 and —0.60 in Figs. 4-7. The
evolution of the bubble interface for ¢f=0.000 is shown in Fig. 5 which contains several
‘snapshots’ of the bubble shape as the amplitude of the P, mode grows.

For the exact resonance condition of ¢f=0.00, shown in Fig. 4, there is a strong continuous

1.5

1.5 e
1.5 0.5 0.5 15

Fig. 5. The evolution of the bubble shapes and the P, mode grows for Case B (Table 1 with ¢5=0.00, wot/2n="7.3
—8.4.
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Fig. 6. Amplitudes of the P,, P, and P, modes (top) and the Ps mode (bottom) for Case B (Table 1) with
ef= —0.40.

exchange of energy between radial and shape oscillations as anticipated above. The period of
the slow variation in the amplitudes has shortened to 7' = 17 which is approximately a factor
of 10 decrease from case A. Surprisingly, in view of the finite amplitude of shape and volume
perturbations, this decrease in 7 is in agreement with the expected scaling of the timescale from
the small amplitude theory, t=e¢t. As in the case A the energy transfer is never complete: the
maximum amplitude of the P, mode oscillation (~0.35) is less than both the small amplitude
prediction of 0.48 and the value of 0.40 that could be expected via a linear scaling from case A
as can be seen by comparing the predictions from small deformation theory with the numerical
results in Fig. 4. This suggests the onset of a significant degree of nonlinear behavior that is
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Fig. 7. Amplitudes of the Py, P, and P, modes for Case B (Table 1) with ¢= —0.60.

not accounted for in the small amplitude theory. This is further evidenced by the intermittent
appearance of higher, P, mode oscillations in Fig. 4. The Ps and Pg modes also appear with
small amplitude in the simulation, but are not shown in the figure. All of the simulations up to
ef= —0.30 are qualitatively similar to that shown in Fig. 4, with some modest change in the
maximum P, amplitude and the period of amplitude modulation. Details can be found in the
Ph.D. thesis of McDougald (1997).

The finite amplitude of the P, mode has a significant influence on the excitation of higher
modes. In Fig. 6, for which ¢f= — 0.40, the presence of higher mode oscillations produces a
nonlinear change in the bubble dynamics. The period of the slow variation in the amplitudes
decreases from T =~ 30 to T =~ 25 as wqt/2n increases, and there is a gradual decrease in the
energy returned to the radial oscillations. This is evidenced by the increase in the minimum
amplitude of the P, mode at wyt/2n =60, versus its value at 30, as well as the gradual increase
in the energy of the higher modes, P, and Ps. In looking at the P¢ mode only, Fig. 6, the
increase in minimum amplitude with time is clearly shown. Although the effect on Py is quite
small in this specific case, the ‘permanent’ transfer of energy from radial oscillations to higher
order shape modes is characteristic of the finite amplitude problem. These phenomena are
already beyond the scope of the small amplitude theory which only accounts for interactions
between two modes of appreciable amplitude. They further support the likely importance of
nonlinear damping suggested by Longuet-Higgins (1992) wherein the energy available to drive
oscillations is decreased as it is transferred to higher mode shape oscillations, where it can be
removed more efficiently by viscous dissipation due to the smaller length scales that are
generated. It is also interesting to notice that some time was required before the nonlinear
features appeared in the Py and P, modes; seemingly the higher modes must become activated
before they can accept enough energy from the lower modes to effect the dynamics of the
bubble.
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Fig. 7 illustrates the transition to stable radial oscillations as in case A. The small amplitude
theory predicts the correct trends in the period of time-modulation of the oscillations of
volume and shape increases as you move away from the exact resonance condition, but the
period of the slow variation of the amplitude only agrees with the numerical results for small
values of ¢f. However, the amplitude of the radial and P, mode oscillations is fairly well
predicted by the small deformation theory even though the oscillation amplitudes are not
infinitesimal. It is, therefore, somewhat surprising that the transition to stable radial
oscillations occurs very near the predicted value of |ef|.,=0.63 even though the bubble
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Fig. 8. Amplitudes of the Py, P, and P4 modes (top) and the volume response V' compared with the Rayleigh—
Plesset theory Vgrp (bottom) for Case C (Table 1) with ¢f= —0.50.



902 N.K. McDougald, L.G. Leal | International Journal of Multiphase Flow 25 (1999) 887-919

response for smaller |¢f| already exhibited significantly nonlinear behavior that is beyond the
scope of the small deformation theory. The numerical results suggest that finite amplitude,
spherical bubble oscillations are slightly more stable than predicted by small amplitude theory.

The final case of Table 1, case C, is for still larger initial amplitudes and the results
presented are obtained via the boundary integral code as the solution would require too many
modes for efficient application of the spectral method. Fig. 8, for ¢f= — 0.50, is a result for
conditions well within the region of instability |¢f| < 1.22. Of particular significance is the rapid
growth of the higher modes in this case: the P, amplitude exceeds 0.2 by wyt/2n=5 and the
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Fig. 9. Amplitudes of the Py, P, and P4 modes (top) and the volume response V' compared with the Rayleigh—
Plesset theory Vgrp (bottom) for Case C (Table 1) with ¢f= —1.00.
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Fig. 10. Amplitudes of the Py, P>, and P4 modes for Case C (Table 1) with ¢f= —1.20.

modes above P4 rapidly gain amplitude as well, in spite of the fact that it is the P, mode that
is being directly excited via resonant interaction with the radial oscillations. The actual volume
of the bubble, including changes in the bubble volume due to changes of shape, is also
compared with predictions from the Rayleigh—Plesset theory in Fig. 8. Clearly, the Rayleigh—
Plesset theory over-predicts the amplitude of volume oscillations and fails to capture the
amplitude modulation that occurs as energy is exchanged between the radial and shape modes.
Furthermore, the difference between the finite amplitude, non-spherical bubble simulation and
the Rayleigh—Plesset prediction is significant within the first few periods. A close look at the
amplitude of the Py mode and the bubble volume in Fig. 8 reveals a small, but steady decrease
in the maximum amplitude after each exchange with the P, mode as the amount of energy
available to be returned from the P> mode is decreased through interaction with higher modes.

Fig. 9 shows the result for the further detuned case of ¢f= — 1.00. As predicted by the small
amplitude theory, the period of the amplitude modulation has increased compared to the e¢ff=
— 0.50 case. However, in contrast to the predictions of the small amplitude theory, the
minimum amplitude of the radial oscillations has decreased. This is a result of more energy
being transferred to higher modes during the time that shape mode amplitudes are large; the
longer period of the slow modulation of the amplitudes allows more time for energy transfer
via mode coupling to occur. The volume response of the bubble still differs significantly
from the Rayleigh—Plesset prediction. However, when the level of detuning is slightly increased
to ¢f= — 1.20 the bubble response dramatically changes to a stable volume oscillation as
shown in Fig. 10. It is surprising that this transition is well predicted by the small amplitude
theory value of |efl,=1.22 even though the amplitudes of the radial and shape oscillations
are finite and the unstable oscillations involve many higher order shape modes and the
generally poor agreement between the small deformation results and the numerical results for
this case.
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Fig. 11. Amplitudes of the Py, P,, P4 and P¢ modes (top) and the volume response V' compared with the Rayleigh—
Plesset theory Vyp (bottom) for Case D (Table 2) with ¢f= —1.00.

Even though the 2:1 resonance results presented so far have all been for interaction with the
n=2 shape mode, interactions between radial oscillations and P, mode shape oscillations are
expected for all even values of n. However, as the mode number increases, the numerical
solution of the problem requires smaller time-steps as the frequency of oscillation is increased
and, eventually, also finer spatial resolution to capture the small length-scale, high mode
oscillations. Figs. 11 and 12 show the response of a bubble under 2:1 resonance conditions for
n=4. The initial disturbances and the predicted critical value of |¢f|., appear in Table 2. In
Fig. 11 the interaction between the radial and P, shape mode exhibits the continuous exchange
of energy seen in the n=2 examples. The excitation of higher modes is also evident with the
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Table 2
The initial radial and shape disturbances and the predicted critical value of the detuning parameter

Case €010 €0y 4 leler

D —0.020 0.100 0.977
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Fig. 12. Amplitudes of the P,, P, and P4 modes for Case D (Table 2) with ¢f= —1.20.
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Fig. 13. The steady-state shapes for bubbles described in Table 3 with non-spherical mean shapes. There is
rotational symmetry about the x-axis. There are two prolate bubbles, 4,= — 0.30, —0.61, and an oblate bubble,

A,=0.61, shown with a sphere (the dashed line) for reference.
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with ¢f85=1.96.

appearance of Ps shape mode oscillations as the P4 amplitude grows. A weak P, deformation
also appears when the P, amplitude is large. The origin of the P, deformation and oscillation
is not explained by the small amplitude theory. However, the departure from Rayleigh—Plesset
theory, Fig. 11, and the dramatic transition from unstable to stable radial oscillations near the
critical value predicted by small amplitude theory are evident for this case with wg ~ 2w4. Fig.
12 shows an exchange of energy between the P, shape mode and radial oscillations, but there
is no significant change in the amplitude of radial oscillations.
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Fig. 15. Amplitudes of the Py, P, and P4 modes for Case E (Table 3) with ¢f*=0.25.
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Table 3

The equilibrium values of ey o, €oy » and the corresponding values of 4, and 4,

Case €a ]SSO € ]SSZ A A,
A-D 0.00 0.00 0.00 0.00
E 0.00 0.08 0(1073) —0.30
F 0.00 0.18 0(107%) —0.61
G 0.00 —0.14 0(1073) 0.61

4.2. Free oscillations of a bubble with a non-spherical mean shape

For a non-spherical bubble in a quiescent fluid 1:1 resonance between the volume and P,
shape mode oscillations becomes possible when the mean deformation of the bubble involves
the P, mode and wg = w,. In the present study, the steady-state shape of the bubble is made
non-spherical by a non-uniform pressure distribution imposed on the interface that is described
by the pressure coefficients, 4y and A4,, outlined in Section 2. According to the small amplitude
theory for 1:1 resonance, the behavior of the bubble does not change abruptly at a critical level
of detuning. Instead, the interactions between the radial and shape modes decrease
monotonically as the separation of their natural frequencies grows. In these cases, it is
important to differentiate between the detuning parameter ¢f; based upon the natural
frequencies for a spherical bubble given in Eq. (3) and the effective detuning parameter ¢f*
which accounts for the small amplitude predictions of changes in frequency due to the non-
spherical mean shape, as given in Eq. (11). The steady-state amplitudes for the P, and P,
modes and the non-uniform pressure coefficients, 4y and A,, for the cases studied are listed in
Table 3. The corresponding steady-state shapes are shown in Fig. 13.

0.35 — —
0.30
0.25 |
0.20 |
0.15 | ,
010 Lort]
0.05 s
0.00 AH4Fbir

005 ¥ ¥V

-0.10 U —

Amplitude

Fig. 16. Amplitudes of the Py, P, and P4 modes for Case E (Table 3) with ¢f*=0.05.
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Fig. 17. Amplitudes of the Py, P, and P, modes (top) and the volume response V' compared with the Rayleigh—
Plesset theory Vgrp (bottom) for Case E (Table 3) with ¢f*= —0.15.

The qualitative effect of mean deformation on the detuning parameter can be seen in Figure
14. In this figure, the effective detuning parameter predicted by the small amplitude theory,
¢f*, is compared to the amount of detuning measured from numerical stimulations which we
denote as ¢f3;,, for a case where the value for a spherical bubble would be eBj=1.96. The first
thing to notice is that the three measures of the detuning are equal without a mean
deformation. The estimate of the effective detuning parameter from the small amplitude theory
varies linearly with the pressure coefficients, 4, and 4,, as can be seen from Eq. (5). The
increase in both the effective and numerically predicted detuning parameters (i.e. the differences
in wy — w,) for A, < 0 is a consequence of the decrease in the natural frequency of the shape
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Fig. 18. Amplitudes of the Py, P> and P, modes for Case E (Table 3) with ¢f*= —0.35.

mode for bubbles with a mean prolate shape. Likewise, the decrease in the effective and
numerically predicted detuning parameters for A, >0 reflects the increase in the natural
frequency for shape modes with a mean oblate shape. The simulation results presented below
will be identified by the value of the effective detuning parameter from the small amplitude
theory, ¢f™, since it can be determined a priori. We note, however, that the exact condition for
maximum resonance will not generally be ¢f*=0, as can be seen from Fig. 14.

The first series of results are for case E in Table 3 where the mean shape is a prolate
spheriod with the steady-state shape given by cx §%=0.0 and ea §§=0.08. The bubble interface
is set in motion by an initial perturbation of the bubble radius. It will be noted from Fig. 14
that the actual detuning generally exceeds that predicted by small amplitude theory, meaning
that the decrease in frequency of the shape mode is smaller than what is predicted by the small
deformation theory. Hence, for finite mean prolate deformation, we may anticipate that the
effective detuning parameter, ¢f*, will need to be negative to achieve maximum resonance. For
case E, calculations were carried out for values of the effective detuning parameter over the
range —0.95 < ¢f* < 0.85, and selected results appear in Figs. 15-18. In Fig. 15, the response
for ¢f*=0.25 illustrates a relatively weak interaction where the shape mode is clearly active,
but the amplitude of oscillation is such that the radial mode appears to maintain a constant
amplitude. In this case, the small deformation theory does a modestly good job of predicting
the bubble behavior, even though the amplitudes of the deformation are not small. As the
detuning parameter is decreased to ¢f*=0.05, Fig. 16 shows an increase in the strength of the
exchange of energy between the Py and P, modes. However, Fig. 16 still shows only a modest
level of interaction between Py and P>, and almost no higher order modes. In this case, the
predicted trajectories from the small amplitude theory are further from the numerical results.
The small amplitude theory overestimates the strength of the Py—P, interaction. In fact, we
shall see that the interactions in this case, according the small amplitude theory, should be the
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Fig. 19. Amplitudes of the Py, P, and P, modes (top) and the volume response V' compared with the Rayleigh—
Plesset theory Vgyp (bottom) for Case E (Table 3) with ¢=0.17.

strongest of all the cases from ‘case E’ that we consider. For these simulations, it may be noted
in Figs. 15 and 16 that the phase difference between the Py, and P>, modes is ¢ =7 when the
shape oscillations achieve their maximum amplitude. According to the small amplitude theory,
the phase angle at the point when the shape mode has its largest amplitude, should change
from 7 to 0, as we go from the actual ¢ >0 to ¢f < 0, with the transition point corresponding
to exact resonance. The case ¢f*= — 0.15 is shown in Fig. 17. We see that there is stronger
energy exchange between modes, with a significant decrease in the amplitude of volume change
relative to Rayleigh—Plesset predictions. Now, however, the modes are in phase (i.e. ¢=0) as
the shape mode oscillations reach their maximum amplitude, indicating that the frequency of
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Fig. 20. Amplitudes of the Py, P, and P4 modes for Case F (Table 3) with ¢8*= —0.16.

the volume mode is now less than that of the shape mode and we have passed the actual
resonance condition. The transition thus occurs between ¢f*=0.05 and —0.15 in qualitative
agreement with the prediction of the small amplitude theory and as expected in light of the
agreement between the actual and effective detuning parameters for this case, 4,= — 0.30,
shown in Fig. 14. Perhaps the most important feature of Fig. 17 is the significant decrease in
radial mode oscillations. When compared to the Rayleigh—Plesset result for a bubble of the
same volume and initial disturbance, it is clear that the Rayleigh—Plesset theory overestimates
the amplitude of the volume oscillation. It is somewhat of a surprise to find such a large effect
for this weakly deformed case. The small amplitude theory, in this case, does a reasonable job
of predicting the amplitude modulation of the P, mode, but it does relatively poorly in
predicting the decrease of the radial mode oscillation. This is because a significant portion of
the energy transferred to shape oscillations actually goes to higher-order modes that do not
appear in the small amplitude theory. As the effective detuning parameter is further decreased,
it can be seen in Fig. 18, ¢f*= — 0.35, that the amount of energy exchanged between modes
again decreases as we move away from the resonance condition; that there is only weak
excitation of shape modes other than P,; and the small amplitude theory is in reasonable
accord with the full numerical results.

It is important to emphasize that the 2:1 resonant interaction also occurs for bubbles with a
mean deformation of shape. The main difference, relative to the results of the previous section
for an undeformed bubble, is that we must use the effective detuning parameter from Eq. (4) to
estimate proximity to resonance, rather than ¢fy=0. To illustrate this point, Fig. 19 shows a
typical result in the neighborhood of the 2:1 resonance condition. The volume response of the
non-spherical bubble is clearly over-predicted by the Rayleigh—Plesset theory. In this example
the effective detuning parameter for 2:1 resonance has a value of ¢f=0.17 which is within the
unstable region, |¢ff| <0.45, predicted by small amplitude theory for case E. For bubbles with a
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Fig. 21. Amplitudes of the Py, P, and P, modes (top) and the volume response V' compared with the Rayleigh—
Plesset theory Vyp (bottom) for Case F (Table 3) with ¢ "= —0.36.

mean deformation, we therefore have identified two ranges in the natural frequency of radial
oscillations where the Rayleigh—Plesset theory does not adequately predict the volume response
of an oscillating bubble; the amplitude of the volume response is over-predicted in the
neighborhood of both the 1:1 and 2:1 resonance conditions.

In case F of Table 3, the mean deformation has been increased to make the steady-state
shape of the bubble more prolate. The interaction between volume and shape oscillations
occurs over the frequency range —0.96 < ¢fi* < 0.64 with a noticeable change in the radial
response in the range —0.56 < ¢f* < 0.04 for the same initial radial disturbance of eo; o =0.05.
The results with the greatest exchange of energy between modes are shown in Figs. 20 and 21
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Fig. 22. Amplitudes of the Py, P, and P, modes (top) and the volume response V' compared with the Rayleigh—
Plesset theory Vgp (bottom) for Case G (Table 3) with ¢f*= —0.11.

where the values of the effective detuning parameter are ¢f*= — 0.16 and —0.36, respectively.
By looking at the relative phase when the shape oscillations achieve their maximum amplitude
we again conclude that these results lie on opposite sides of the actual exact resonant
condition. The actual resonant condition does not occur at ¢f*=0.00 due to the growing
disparity between the actual and effective detuning parameters as the mean deformation
increases as seen in Fig. 14. It is again important to note the pronounced decrease in the
amplitude of the radial mode oscillations. Indeed, when the volume oscillations for ¢ff*= —
0.36 are compared to Rayleigh—Plesset predictions in Fig. 21, a large difference in the
amplitude of the bubble response is seen in the first few cycles of the volume oscillation.
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Fig. 23. The evolution of the bubble shapes and the P, mode grows for Case G (Table 3) with ¢f*= —0.11, wot/
2r=13—14.

The final results we present are for a bubble with a steady-state oblate shape corresponding
to ca ?52: —0.14, case G in Table 3. The oblate spheriod bubble is compressed along the axis
of rotational symmetry and in an extreme example would resemble a coin. As for case F, we
present results in the vicinity of the exact resonant condition. In Fig. 22, the result for ¢f*= —
0.11 exhibits a large growth in the P, mode at the expense of radial oscillations. As in the 2:1
resonance case, shape modes of higher order are excited when sufficient energy has been
transferred to the shape mode that is directly coupled to the radial oscillations via a resonant
interaction. The effect on the volume oscillation of the bubble is shown in Fig. 22 which again
demonstrates that the Rayleigh—Plesset equation over-predicts the amplitude of volume
oscillations for a bubble that is not restricted to a purely spherical shape. The bubble shapes in
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Fig. 24. Amplitudes of the Py, P, and P4 modes for Case G (Table 3) with ¢f*= —0.21.
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Fig. 23 for 13 < wgt/2n < 14 reveal how the bubble shape evolves over a period of the radial
oscillation. In Fig. 24 where the detuning is ¢f*= — 0.21, the radial and shape oscillations are
now out of phase when the shape mode has its largest amplitude in contrast to Fig. 22 where
the modes are in phase as the shape mode has its maximum amplitude. This tells us that these
two simulations have values of the detuning which bracket the actual resonance condition.

4.3. Bubble breakup

In two phase gas—liquid systems the rates of heat and/or mass transfer are strongly
influenced by the interfacial area between the phases. As a result, in gas—liquid mass or heat
transfer systems, the bubble size distribution is extremely important. The bubble size
distribution is determined by a balance between the rate of bubble breakup and the rate of
bubble coallescence. In our study of the dynamics of non-spherical bubbles we have observed
two mechanisms of bubble breakup, neither of which requires the large gradients of pressure or
velocity that are generally associated with bubble breakup. Instead, these mechanisms require
only a large initial perturbation of the bubble volume, that eventually leads to large oscillations
of shape via parametric instability or resonant coupling between volume and shape modes. In
this section, we present results showing the two mechanisms of bubble breakup that we have
observed.

Building on the results for case C in Section 4.1 the initial radial disturbance was increased
for a bubble with ¢fy= — 1.00 with a fixed initial P, perturbation of ex; ,=0.10. The sequence
of bubble shapes immediately preceding breakup for cx; (=0.20 is shown in Fig. 25. The
shapes are axisymmetric about the horizontal axis. In this sequence, the earliest shape,
approximately one half period before breakup, is the oblate spheroid corresponding to the
outline with the smallest horizontal dimension and the largest vertical dimension. As time
progresses, a waist is formed in the bubble as the vertical dimension shrinks until finally the
bubble pinches off to form two bubbles with oblate initial shapes. It is noteworthy that the
bubble shapes become more complex as the bubble collapses. This appears to be a consequence
of the growth of surface waves as the area of the bubble decreases. A corresponding decrease
in the complexity of the bubble shape was observed in the expansion phase of the bubble
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Fig. 25. The evolution of the bubble shapes during the final collapse before breakup.
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Fig. 26. The evolution of the bubble shapes during the final collapse before breakup via the formation of a toroidal
bubble.

which precedes the series of bubble shapes in Fig. 25. It should be noted that bubble breakup
was also observed to occur by the formation of a toroidal bubble where the opposite surfaces
of the bubble approach along the horizontal axis. This breakup mechanism is illustrated below
with an example describing the breakup of a bubble in the presence of a nonuniform pressure
field.

Consider now a bubble with the same mean shape as those in case G of Section 4.2 with
¢f*= —0.11 and an initial radial displacement of eo; o=0.40 driving the oscillations. Again the
outlines of the bubble shapes just preceding breakup are presented in Fig. 26. In contrast to
the earlier bubble breakup result, the collapse of the bubble is more pronounced along the
horizontal axis and the collapse results in the formation of a toroidal bubble. We do not
endeavor to follow the bubble evolution beyond the contact of the opposing surfaces, but it is
reasonable to assume that the toroidal bubble further breaks into several bubbles via a
capillary wave-like instability. The final result of the breakup mechanism would then be a ring
of smaller bubbles. This mechanism for bubble breakup has also been suggested by Longuet-
Higgins (1990). An insufficient number of simulations have been done to determine which, if
either, method of bubble breakup occurs most frequently.

5. Summary of results

5.1. Bubbles with a spherical mean shape

e 2:1 resonant coupling between purely radial and a single shape mode oscillation results in a
continuous exchange of energy between modes. The strength of the interaction—the amount
of energy exchanged—depends upon the proximity to the resonance condition in agreement
with small deformation theory, cf. Figs. 2 and 3.

e Finite amplitude deformations lead to excitation of higher order shape modes and energy
transfer mechanisms beyond the scope of small deformation theory. The cascade of energy
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to into higher order modes results in a slow decrease in the amplitude of volume oscillations.
However, theory is able to provide a conservative estimate of the frequency range over
which the purely radial oscillations are ‘unstable’ and lead to large oscillations of bubble
shape, cf. Figs. 4-7, 810, and 11-12.

e The volume response of bubbles near resonant conditions is markedly different than that
predicted by Rayleigh—Plesset theory which over-predicts the amplitude of volume
oscillations when energy has been transfered to shape mode oscillations, cf. Figs. 8 and 9.

e The resonant interaction is not necessarily between purely radial and P, mode oscillations.
Fig. 11 shows the impact on the volume response for the interaction between radial and Py
mode oscillations.

5.2. Bubbles with a non-spherical mean shape

e In the presence of a mean deformation, the volume response of a bubble in the
neighborhood of 1:1 resonant conditions shows significant deviation from Rayleigh—Plesset
theory within the first few cycles of oscillation, cf. Figs. 17, 21 and 22.

e The small deformation theory provides a reasonable estimate of the amount of energy
exchanged between modes as the proximity to resonant conditions varies, but does not
consistently predict the details of the interaction between modes. Most notably the theory
often fails to capture the period of the slow variation in the oscillation amplitudes.

e The 2:1 resonant interaction can still occur for bubble with a mean non-spherical shape, cf.
Fig. 19.

e The magnitude of the mean deformation directly impacts the interaction between modes, as
seen by comparing cases E and F.

e The nature of the bubble response remains unchanged regardless of whether the mean
deformation results in a prolate or oblate spheriod bubble, cf. cases F and G.

5.3. Bubble breakup

e Transfer of energy from finite amplitude radial oscillations to shape oscillations via resonant
and/or finite amplitude interactions can lead to bubble breakup.

e Two methods of bubble breakup have been observed that result in the bubble collapsing to
form either two smaller oblate spheriod bubbles or a toroidal bubble which is likely to
further break to form several smaller bubbles, cf. Figs. 25 and 26.

6. Conclusions

The numerical results presented in the previous sections illustrate the importance of both
volume and shape oscillations on the dynamics of oscillating bubbles and suggest that both
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must be considered when trying to predict the response of a bubble to finite amplitude
disturbances. The small amplitude analysis from earlier studies serves as a roadmap which aids
in the interpretation of the results at finite amplitude. In addition, the small amplitude theory
provides conservative estimates for the limit of stability of spherical oscillations over the entire
range of conditions considered in the investigation of the 2:1 resonant interactions for bubbles
with a spherical equilibrium shape. Surprisingly, this is even true for the large amplitude
example, case C, when the shape oscillations of the bubble involve many higher order modes
that effect the bubble dynamics.

Oscillations of shape are important over a broad range of frequencies when the bubble
oscillations are of finite amplitude. The decrease in the amplitude of radial oscillations as shape
oscillations are excited provides a possible explanation for the over-prediction of sound
generated by an oscillating spherical bubble given by the Rayleigh—Plesset equation. The
presence of even a slightly non-uniform pressure leading to a deformed mean shape leads to
significant deviation from the Rayleigh—Plesset prediction for the volume response of a bubble.
Furthermore, numerical results for bubbles with a mean deformation identify two frequency
ranges, corresponding to 2:1 and 1:1 resonance, where the Rayleigh—Plesset theory is
insufficient to describe the volume response of an oscillating bubble.

The excitation of higher order shape modes provides a mechanism for additional decreases
in the amplitude of radial oscillations. Even without viscous dissipation the excitation of higher
modes reduces the amount of energy available to drive radial oscillations. If the energy
transferred to higher modes is removed via dissipation, the bubble response should decrease in
amplitude until the interactions between Py, and P, are no longer of sufficient amplitude to
excite higher modes.

Bubble breakup is observed to occur via two mechanisms, (1) the bubble fissions into two
smaller oblate bubbles, as shown in Fig. 25, or (2) the bubble collapses to form a toroidal
bubble, as in Fig. 26, which is assumed to further break into several small bubbles. If the
smaller bubbles formed through the first mechanism subsequently break-up following the
second breakup route, a number of smaller bubbles would be formed. In this manner, bubble
breakup would lead to the formation of a cloud of smaller bubbles. Testing of this hypothesis
would require developing a code suitable for studying the breakup of a toroidal bubble.
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